The generator matrix

 1  0  0  1  1  1 X^2+X  1  1  1  X  1  X X^2+X  1 X^2+X  1  1  1 X^2+X X^2+X  0  1  X  1  1 X^2  1  1  X  1  1  1  1  1  X
 0  1  0  1  0  1  1  X  1  X  1  1 X^2+X  1 X^2+1  1  0 X^2+X X^2+X+1  0  1 X^2  1  1 X^2+1 X+1  1 X^2+X+1 X^2+X  1  1  0 X^2+X  0 X^2  0
 0  0  1  1  1  0  1 X+1  1  X X^2+X X^2  1 X^2+1  0  1  X X^2+X+1  1  1  0  1  X X+1 X^2+X+1  0  X X^2+X  1  1 X+1 X^2+X  0  1 X+1  0
 0  0  0  X  0  0  0  0  0  0  0  0 X^2 X^2  0 X^2 X^2 X^2 X^2+X X^2+X  X  X  X X^2+X  X  0  0 X^2+X  X  X X^2+X  X X^2 X^2+X X^2+X X^2+X
 0  0  0  0  X  0  0  0 X^2  X  X  X  X X^2+X X^2 X^2  0 X^2+X X^2  X  0 X^2+X  X X^2  X  X X^2  0 X^2  X X^2  0 X^2+X  0  X  X
 0  0  0  0  0  X X^2+X X^2+X  0  X X^2+X X^2 X^2+X  0 X^2 X^2 X^2+X X^2+X  X X^2  X  X  X X^2+X  0 X^2+X X^2+X  X  0  0 X^2  0  0 X^2  0 X^2

generates a code of length 36 over Z2[X]/(X^3) who�s minimum homogenous weight is 28.

Homogenous weight enumerator: w(x)=1x^0+204x^28+172x^29+900x^30+952x^31+2147x^32+2200x^33+3594x^34+3840x^35+4586x^36+3860x^37+3886x^38+2252x^39+2146x^40+848x^41+710x^42+184x^43+186x^44+24x^45+62x^46+4x^47+10x^48

The gray image is a linear code over GF(2) with n=144, k=15 and d=56.
This code was found by Heurico 1.16 in 20 seconds.